Localized States and Resultant Band Bending in Graphene Antidot Superlattices
نویسندگان
چکیده
منابع مشابه
Localized States and resultant band bending in graphene antidot superlattices.
We fabricated dye sensitized graphene antidot superlattices with the purpose of elucidating the role of the localized edge state density. The fluorescence from deposited dye molecules was found to strongly quench as a function of increasing antidot filling fraction, whereas it was enhanced in unpatterned but electrically backgated samples. This contrasting behavior is strongly indicative of a b...
متن کاملGraphene Optoelectronics based on Antidot Superlattices
Graphene is well known for its outstanding electronic, thermal, and mechanical properties, and has recently gained tremendous interest as a nanomaterial for optoelectronic devices. We review our recent efforts on exfoliated graphene with a particular focus on the influence of graphene’s chiral edges on the electronic and optical properties. We first show that Raman spectroscopy can not only be ...
متن کاملLocalized magnetic states in graphene.
We examine the conditions necessary for the presence of localized magnetic moments on adatoms with inner shell electrons in graphene. We show that the low density of states at the Dirac point, and the anomalous broadening of the adatom electronic level, lead to the formation of magnetic moments for arbitrarily small local charging energy. As a result, we obtain an anomalous scaling of the bound...
متن کاملLocalized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices
In this paper we present calculations on the electronic band structure of a two-dimensional lateral superlattice subject to a perpendicular magnetic field by employing a projection operator technique based on the ray-group of magnetotranslation operators. We construct a new basis of appropriately symmetrized Bloch-like wavefunctions as linear combination of well-localized magnetic-Wannier funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2011
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl1042648